Benefits of Usage Monitoring and T&E in Fleet Management of U.S. Army Helicopters

David White
Technical Director
Spectra Technical Solutions, Inc.
Huntsville, Alabama, USA
djwhite@spectech-inc.com

Michael Brauss
President
Proto Manufacturing Limited
Oldcastle, Ontario, Canada
proto@protoxrd.com

HUMS2005 – DSTO International Conference on Health and Usage Monitoring
Melbourne, Australia, 15-17 March 2005
Army Force Mod Helicopters are at Mid Life

- Average design age of Army Force Mod Helicopters: ~30 years

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Entered Service</th>
<th>Design Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH-47</td>
<td>1961</td>
<td>44+ years</td>
</tr>
<tr>
<td>UH-60</td>
<td>1978</td>
<td>27+ years</td>
</tr>
<tr>
<td>AH-64</td>
<td>1984</td>
<td>21+ years</td>
</tr>
</tbody>
</table>

- 2000 of 3000 Force Mod aircraft are slated to be rebuilt and upgraded and remain in service beyond 2030.
Objective: Protect safety.
Goal: Ensure six-9s of reliability.

Intent:
Conservative assumption of fatigue damage accumulation.

Reality:
Does not address operational usage related degradation.

Design usage spectrum
- Design flight regimes
- % time in regimes

Cyclic load & stress for each flight regime
- Determined by flight test
- Conservative (2 of six 9s)

Stress vs Life
- Life = mean minus 3σ
- Conservative (3 of six 9s)

Assumes severe usage
Conservative (1 of six 9s)
Usage Monitoring and T&E Facilitate Understanding of Maintenance Drivers

- Replacement for cause --
 - Fatigue cracks
 - Delamination
 - Impact damage
 - Corrosion
 - Wear

- Usage Related Degradation --
 - Environmental Corrosion
 - Stress Relaxation
 - NDI Measurements
 - Supported by Destructive Test
 - Statistical Sampling

- Note: Operational location environments --
 - Elevation
 - Desert
 - Tropical
 - Cold
 - Salt
 are important usage parameters.
Army Helicopter CSIs Fall Far Short of Achieving Design Life Expectations

Based upon 96 AH-64A/D, CH-47D/F, UH-60A/L CSI Part Nos.

US Army Actuals

- 25%, $217M
- 33%, $188M
- ?=$29M
- ?=$163M

Assumption: All components will achieve the service life of those in current maintenance database.

Parts & Labor Cost:

100%, $54M

Monitored Life:

216%, $25M

Design Life:

?=$29M
FLL CSI Management Process

1. **T&E Selected Parts to Ensure Continued Safety**
 - Info Feedback (Lessons Learned)

2. **For Cause**
 - Design Flight Hrs

3. **Inspect Part**
 - Anomalies

4. **Rework Part?**
 - Yes
 - No

5. **Return Part to Inventory with Usage & NDI Info**

6. **Discard Part**

7. **Monitor Part Usage History**

8. **NDI Parts in Field**

- CSI life managed by --
 - Flight hours
 - Usage information
 - Test verification

Seldom Occurs!
XRD is a rapid method for measuring residual stress.
- Non-contact
- Reliable
- Non-destructive
- Quantitative

Residual stress characterization relates to –
- Crack initiation
- Stress corrosion cracking
- Crack propagation
- Fatigue life

XRD applies to helicopter critical safety items:
- Dynamic components
- Drivetrain components
- Engines components
- Airframe & landing gear

XRD measurement of residual stress facilitates –
- Awareness of degradation
- Improved safety
- Informed decisions
- Reduced cost
Residual Stress Measurement Using X-Ray Diffraction (XRD)

- XRD can be applied in the field or at the depot.
- **Field usage: Portable iXRD®**
 - Rugged
 - Small
 - Lightweight
 - Easy to use
 - Fast
 - Adaptable software

- **Depot usage: Laboratory LXRD®**
 - Heavy duty
 - Accurate
 - Repeatable
 - Fast
 - Flexible
 - Automated data generation
Residual Stress Measurement Using X-Ray Diffraction (XRD)

✔ Mix & match maps
 - Residual stress
 - Peak width
 - Hardness
 - Principal stress
 - Stress tensors
 . . . More

✔ Before & after maps
 - Check pre- and post-process
 - Compare new & used
 - Track life cycle

✔ Result displays
 - Customize reports
 - Identify hidden trends
 - Pinpoint hotspots
Residual Stress Measurement Using X-Ray Diffraction (XRD)

- Residual stress affects:
 - Fracture loads
 - Crack opening thresholds
 - Fatigue life

Fracture Load vs Temperature

Crack Opening vs Loading Stress

Stress vs Cycles to Failure
Residual Stress Measurement Using X-Ray Diffraction (XRD)

- Stress corrosion cracking requires:
 - A susceptible material
 - A corrosive environment
 - Tensile stress

- Tensile stresses can be detected with XRD
- Reject parts returned or reworked

[Stress vs Distance to Weld Centerline graph]
Residual Stress Measurement Using X-Ray Diffraction (XRD)

✓ Compare effects of stress relief cycle:
 - Thermal stress relief
 - VSR (vibratory stress relief)

![Graph](image-url)

HR 1020 Residual Stress vs Distance from Weld Toe

- Stress (ksi) vs Distance (mm)
- Data points for pre and post VSR and TSR averages
Residual Stress Measurement Using X-Ray Diffraction (XRD)

- Track Residual Stress
- Obtain XRD Data Over Time
- Map Stress Distributions
- Track Degradation
- Relate To Usage
- Augment Decisions
 - Rework part?
 - Retire part?
 - Continue using part?
 - Modify usage?
- Results:
 - Reduced Cost
 - Increased Readiness
 - Enhanced Safety

Average Stress:

Unused Disk: 0 Cycles

Used Disk: 8078 Cycles
XRDWIN2.0™ Software
Sample Results

✓ Residual Stress Measurements
✓ Triaxial Stress Measurements
✓ Automated Stress Mappings
✓ Utilities
 ➢ Principal stress calculator
 ➢ Effective depth of x-ray penetration
 ➢ Remote access through network
 ➢ Interactive help wizard
✓ Add-In Modules
 ➢ Pole-figure module
 ➢ Expert System module
 ➢ Database Management module
 ➢ Inline Inspection stress module
 ➢ Strain Gauge Monitor module
Summary

✓ US Army Force Mod helicopters are at mid life.
✓ Many critical items achieve a fraction of their design life.
✓ There is the potential to improve the outcomes.
✓ Requires understanding of usage-related degradation.
 ➢ Monitor critical item usage.
 ➢ Track critical item degradation.
 ➢ Relate degradation to usage.
✓ Intervene by making informed decisions:
 ➢ Rework part?
 ➢ Retire part?
 ➢ Continue using part?
 ➢ Modify usage?
✓ Achieve benefits:
 ➢ Improve maintenance
 ➢ Increase readiness
 ➢ Enhance safety
 ➢ Reduce cost