Use of Artificial Neural Networks for Helicopter Load Monitoring

Andrew Liu1, Catherine Cheung1*, Marcias Martinez1

1 Structures and Materials Performance Laboratory, Institute for Aerospace Research, National Research Council Canada, 1200 Montreal Rd, Ottawa, Ontario, Canada K1A 0R6

Abstract

The operational loads experienced by rotary-wing aircraft are more complex than those of fixed-wing aircraft due to the dynamic rotating components operating at high frequencies. As a result of the large number of load cycles produced by the rotating components and the wide load spectrum experienced from a rotary-wing aircraft’s broad range of manoeuvres, the fatigue lives of many components can be affected by even small changes in loads. Ongoing practical load monitoring methods have the potential to improve the accuracy of calculated component retirement times. Direct loads monitoring, however, can be difficult and often-times impractical with high equipment costs and large data storage requirements. This paper explores the potential of utilizing multi-layer artificial neural networks (ANNs) to determine airframe loads at fixed locations from flight state and control system (FSCS) parameters obtained during a Black Hawk flight load survey.

Keywords: usage monitoring, helicopters, artificial neural networks

Introduction

Operational requirements are significantly expanding the role of military helicopter fleets in many countries. This expansion has resulted in helicopters flying missions that are beyond the design usage spectrum, which was originally used to life fatigue critical components. Due to this change in usage, there is a need to monitor individual aircraft usage to compare with the original design usage spectrum in order to more accurately determine the life of critical components. One of the key components to tracking individual aircraft usage and calculating component retirement times is accurate determination of the component loads. Since direct loads monitoring is difficult and expensive, a method to estimate these loads indirectly would be extremely useful.

Extensive research has been carried out using artificial neural networks (ANN) to model operational loads experienced by fixed-wing aircraft structure [1]. Flight loads on a fixed-wing aircraft can generally be separated into gust and manoeuvre dominated loads, the majority of which tend to occur at frequencies of less than a few Hz. In the case of rotary-wing aircraft, the loading spectrum experienced by the airframe structure is significantly more complex. The dynamic rotating components operate at frequencies several orders of magnitude higher than gust...
and manoeuvre flight loads. The frequencies involved, along with synergistic effects of these load sources on the resultant loading spectrum, make direct loads monitoring difficult and often-times impractical, leading to high equipment costs and large data storage requirements. Due to the high number of cyclic loads produced by the rotating components and the wide load spectrum experienced from a rotary-wing aircraft’s broad range of manoeuvres, the fatigue lives of many components can be affected by even small changes in loads. Ongoing practical load monitoring methods have the potential to improve the accuracy of calculated component retirement times.

There have been a number of attempts in the last few decades at estimating these loads on the helicopter indirectly from flight state parameters or fixed points on the airframe with varying success [2]. The National Research Council has collaborated with the Defence Science and Technology Organisation for several years to tackle this problem. The focus is on developing an effective method to more accurately determine flight loads.

In this work, the data gathered from a Sikorsky Black Hawk S-70A-9 operated by the Australian Army were analysed [3]. This paper describes the implementation details of an artificial neural network used to estimate the loads in the cabin, tail pylon and tail cone of the Black Hawk helicopter using only flight state and control system parameters (FSCS). These FSCS parameters are standard recorded parameters from instruments already present in the aircraft and consequently would not involve additional instrumentation. The presented results represent early findings in this research.

Test Data

This research work follows on from an initial study looking at the feasibility of using artificial neural networks for predicting dynamic components loads in a helicopter based on fixed airframe measurements [4]. While that work analysed the signals in the frequency domain and focused on dynamic component loads, this work concentrated on fixed airframe measurements predicted using flight state and control system parameters analysed in the time domain.

The data was obtained from a S-70A-9 Black Hawk (UH-60 variant) flight loads survey conducted in 2000 in a collaboration between the United States Air Force and the Australian Defence Force [3]. During these flight trials, 65 hours of useable flight test data were collected for a number of different steady state and transient flight conditions at several different altitudes and aircraft configurations. Access to this data was granted by the Defence Science and Technology Organisation.

The strain data from the Black Hawk flight load survey was captured by 321 strain gauges, with 249 gauges on the airframe and 72 gauges on dynamic components. These gauges were mounted on areas prone to cracking and structural distress, primarily in the upper cabin, tail cone, tail pylon, horizontal stabilator, External Stores Support System, and main rotor pylon. In addition to strain data, accelerometers were installed to measure accelerations at several locations on the aircraft and other sensors captured flight state and control system parameters. The parameters were recorded at one of three sampling frequencies: 52 Hz, 416 Hz, and 832 Hz. Full details of the instrumentation and flight loads survey are provided in [3].
Artificial Neural Network Implementation

Artificial neural networks (ANNs) are inspired by biological neural systems, like the human brain, and are capable of learning complex problems very quickly. They are comprised of layers of nodes or neurons that are interconnected. ANNs learn by altering neurons to model the relationship between multiple inputs and outputs. Transfer functions or activation functions are used to represent this relationship [5].

The artificial neural network implemented in this work was a multi-layer perceptron coded in MATLAB using the Neural Network Toolbox. The network developed for this work was a two-layer feed-forward back-propagation network, consisting of one input layer, one hidden layer, and one output layer.

There were three stages in the ANN simulation: training, validation and testing. Training of the neural network consisted of two steps: feed-forward and back-propagation. The ANN propagated the inputs forward through the network to obtain the outputs of every unit. The network was fully connected from one layer to the next, so that all of the node outputs were sent to each of the nodes in the next layer. Then the ANN propagated the errors backward through the network and updated the weights. The weight update rule sought to minimize the errors. Nodes in the hidden and output layer transformed the weighted sum from the previous layer via an activation function. Each layer could have a different activation function. Figure 1 shows the operations occurring at each node and Figure 2 provides a schematic of the network structure.

Training and validation took place simultaneously, for which 70% of a single data file was used for training, and the remaining 30% was used for validation. For validation, the output was determined and the resulting validation error was calculated using a mean squared error (MSE). Training was carried out until the validation error reached a minimum. Testing was then carried out on new unseen data using a different data file of the same flight condition or sometimes using a different flight condition altogether.

7th DSTO International Conference on Health & Usage Monitoring
(HUMS 2011)
This paper has been peer reviewed
The selection of the most appropriate performance measure or error function in evaluating the network performance was given much thought. A number of error functions were used throughout this work, including mean squared error (MSE), percentage error, and maximum manoeuvre range (MMR) error as defined in Table 1. Mean squared error was a standard error function used with artificial neural networks measuring the average square of the difference between the predicted and the target output. Percentage error or relative error provided a measure of how well each output was predicted independent of other networks. The maximum manoeuvre range error took into account the full range of the signal in the training data file thus better representing the significance of variations in the predicted values instead of how large the target values were. Use of MMR error also addressed the issue encountered when measured values approached zero, and the percentage error and MSE values became large.

Table 1: Error Functions

<table>
<thead>
<tr>
<th>Error Function</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean squared error (MSE)</td>
<td>$\frac{1}{n} \sum_{i=1}^{n} (t_i - o_i)^2$</td>
</tr>
<tr>
<td>Percentage error</td>
<td>$\frac{</td>
</tr>
<tr>
<td>Maximum manoeuvre range error (MMR)</td>
<td>$\frac{</td>
</tr>
</tbody>
</table>

where t is the target output and o is the network predicted output.

Several activation functions were tested to find the most suitable combination for the hidden layer and the output layer. The options included a purely linear function, the log-sigmoid function and the hyperbolic tangent (tanh) function. The formulae for these functions are given in Table 2. The effect of varying the activation functions of each layer were evaluated for this work. It was found that the best performance was achieved using a log-sigmoid activation function from the input to the hidden layer. From the hidden layer to the output layer the choice of this second activation function did not make a significant difference in the network performance, but the log-sigmoid function provided slightly better results. Overall a log-sigmoid, log-sigmoid activation function combination was found to perform well for this work.

Table 2: Activation Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Linear</th>
<th>Log-sigmoid</th>
<th>Tanh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>$o(y) = y$</td>
<td>$o(y) = \frac{1}{1 + e^{-y}}$</td>
<td>$o(y) = \tanh y$</td>
</tr>
<tr>
<td>Derivative</td>
<td>$o'(y) = y$</td>
<td>$o'(y) = o(y) \times (1 - o(y))$</td>
<td>$o'(y) = (1 - o(y))^2$</td>
</tr>
<tr>
<td>Range</td>
<td>$-\infty$ to $+\infty$</td>
<td>0 to 1</td>
<td>-1 to 1</td>
</tr>
</tbody>
</table>

The effect of changing the number of hidden nodes was also evaluated by comparing the performance of networks using 10, 30, 40 and 60 hidden nodes. Using the same inputs and outputs as the eventual test scenario, the suitable number of hidden nodes was found to be 10. This result agrees with the relationship established between the number of hidden nodes H...
and the number of training examples M: $H = \log_2 M$ [6]. The number of training examples in this case was 922, corresponding to 10 hidden nodes.

Two learning methods were implemented: batch gradient descent and the Levenberg-Marquardt (LM) learning method. Gradient descent learning is the traditional learning method and uses the derivative of the activation function to locate a minimum. A variation is batch gradient descent learning where the weights are updated after several or all of the training data sets have been presented instead of after each data set. This method helps to avoid the network converging toward a local minimum instead of the global minimum [5]. LM learning makes use of the curvature (the second derivative) as well as the gradient (first derivative) to search for the minimum which results in quicker convergence. These two learning methods were tested and it was found that the Levenberg-Marquardt method trained much faster and more efficiently than gradient descent converging more quickly by several orders of magnitude. Furthermore, the errors during testing were much lower showing that the network performance was improved.

The final configuration for the artificial neural network therefore used Levenberg-Marquardt learning, consisted of 10 hidden nodes, and employed log-sigmoid activation functions for the hidden and output layers. This configuration was used for all test scenarios reported in the next section.

Test Results

One of the main goals of this research was to determine if loads on the aircraft could be predicted solely from flight state and control system parameters (FSCS). Thirty parameters were used as inputs to the artificial neural network, which are listed in Table 3.

Table 3: Flight State and Control System Parameters (FSCS)

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
|----|
| Air speed (boom) | Vertical acceleration, load factor at CG | Angle of attack (boom) | Sideslip angle (boom) | Pitch altitude | Pitch rate | Pitch acceleration | Roll attitude | Roll rate | Roll acceleration | Heading | Yaw rate | Yaw acceleration | Longitudinal stick/cyclic position | Lateral stick/cyclic position | Directional pedal position | Collective stick position | Stabilator position | % of max main rotor speed | Retreating tip speed | Main rotor speed (shaft extender torque) | Tail rotor speed (drive shaft torque) | No.1 Engine torque | No.2 Engine torque | No.1 Eng power lever (temp) | No.2 Eng power lever (temp) | Barometric altitude (boom) | Temperature (Kelvin) | Altitude (height density) | Barometric rate of climb (boom) |
While the FSCS parameters were recorded at 52 Hz, the recording frequency for the strain gauges on the airframe varied from 52 Hz to 832 Hz. Since each time point was presented to the neural network as a data sample, the inputs and outputs needed to have the same frequency. Thus the output parameters were down-sampled to 52 Hz corresponding to the sampling frequency of the FSCS parameters.

The airframe loads to be predicted were divided into 3 groups: the cabin, tail cone, and tail pylon. Figure 3 shows the different sections of the Black Hawk helicopter. A separate neural network was used for each group. Since there were 122 strain gauges on the cabin, it was not feasible to use all 122 measurements as outputs for one network. Therefore only 25 of the 122 strain gauges were randomly selected as outputs for one ANN. The tail cone had 13 strain gauges which were all used as outputs for a separate network. The third ANN for the tail pylon used all 32 strain gauges on the tail pylon as the outputs. Between these three structural groups, 70 different outputs were predicted.

![Airframe sections of the Black Hawk](image)

Figure 3: Airframe sections of the Black Hawk [4]

The three ANNs had the same structure: 30 inputs, 10 hidden nodes, log-sigmoid hidden layer and log-sigmoid output layer, and the previously specified number of outputs. They were trained using data from the steady state flight condition (flight run 02-63) of forward level flight at maximum indicated airspeed achievable at max continuous engine power (V_{IH}). The networks were then tested on four different data sets:
- data from the same flight condition (V_{IH}) but a different day than training (flight run 19-31);
- data from forward level flight at half speed ($0.5V_{IH}$) on the same day as training (flight run 02-58);
- data from forward level flight at half speed ($0.5V_{IH}$) on a different day (flight run 19-39);
- and finally data from a steady 30° left turn manoeuvre at $0.8V_{IH}$ (flight run 19-50).

7th DSTO International Conference on Health & Usage Monitoring
(HUMS 2011)
This paper has been peer reviewed
This last data set was included to observe the neural networks’ performance on a manoeuvre significantly different than the one used for training. Table 4 summarizes the performance of the 3 networks on the 4 flight conditions listing the mean squared error, the average percentage error over all outputs recorded in each of the 3 structural groups, and the maximum percentage error recorded among all outputs in each of the 3 structural groups. Note that the percentage error values are based on the maximum manoeuvre range. The plots in Figure 4 to Figure 6 show the average MMR errors for each component location through the 4 test cases.

<table>
<thead>
<tr>
<th>Flight Condition</th>
<th>Cabin (25 outputs)</th>
<th>Tail Cone (13 outputs)</th>
<th>Tail Pylon (32 outputs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSE</td>
<td>Avg Error</td>
<td>Max Error</td>
</tr>
<tr>
<td>Fwd VH 19-31</td>
<td>0.038</td>
<td>15.2%</td>
<td>80.5%</td>
</tr>
<tr>
<td>Fwd 0.5VH 19-39</td>
<td>0.081</td>
<td>23.3%</td>
<td>92.4%</td>
</tr>
<tr>
<td>Fwd 0.5VH 02-58</td>
<td>0.061</td>
<td>20.1%</td>
<td>77.7%</td>
</tr>
<tr>
<td>30°LT 0.8VH 19-50</td>
<td>0.081</td>
<td>22.5%</td>
<td>92.3%</td>
</tr>
</tbody>
</table>

- MSE is the mean squared error
- Average and maximum error were calculated using maximum manoeuvre range error

From the testing of the ANNs on the same flight condition as training, forward level flight at VH (flight run 19-31), all three neural networks predicted the majority of components reasonably well. The average MMR error for the 25 cabin outputs was 15%, 15% for the 13 tail cone outputs, and 17% for the 32 tail pylon outputs. However, it is important to note that at any point in time the error could be as high as the max errors shown in Table 4. In general, components with higher errors were usually ones whose values were very small or varied through a narrow range. Components with lower errors usually had larger strain values or fluctuated through a wider range.

Overall, the maximum manoeuvre range errors varied from 9% at the location with the lowest average error, FS379R3 in the cabin, to 26% at the location with the greatest average error, TPFB198 in the tail pylon. Time history plots for these two locations during training and testing are shown in Figure 7 and Figure 8. In the first case, the network predicted the signal very well, only under-estimating the lower peaks which was also encountered in training. In the second case, although the average error was higher, the network predicted outputs were still within the correct range of the target signal. Figure 9 shows a magnified plot of cabin location TB379. While the average error for this component was 12%, the predicted signal followed the target output very well with the values in the correct range, the upper peak values closely estimated, the lower peaks sometimes underestimated, and the signal frequency matched well. Figure 10 shows the ANN output for this same load plotted against the target output. Consistent with the time history plot, more values were underestimated than overestimated but the number of outliers was small.
Figure 4: Cabin locations average error through 4 test cases

Figure 5: Tail cone locations average error through 4 test cases

Figure 6: Tail pylon locations average error through 4 test cases
Figure 7: FS379 in cabin with the best performance MMR error 9.2%

Figure 8: TPFB198 in tail pylon with the poorest performance MMR error 26.2%

Figure 9: TB379 cabin MMR error 11.7%

Figure 10: Predicted output vs target output for TB379
When testing the neural networks on forward level flight at $0.5V_H$, the errors slightly increased when compared to those at V_H. Even for the location with the greatest error of 30%, the predicted values were within the range of the actual target values.

When the neural networks were tested on a completely different manoeuvre, in this case a steady 30° left turn, only a slight increase in error was observed. The maximum manoeuvre range errors ranged from 13% to 35% over the 3 groups.

For the cabin, shown in Figure 4, the errors were lowest for the first test condition (run 19-31) as one would expect since it was the same flight condition as training. Most components had an error between 9% and 15% with a few falling outside that range up to 25% error. For the second and third test cases, forward level flight at $0.5V_H$ on two different days (runs 19-39 and 02-58), the errors were consistent between the two cases and increased slightly from the baseline test case. For the last test condition, steady left turn (run 19-50), only half a dozen components had greatly increased errors (30-35%) and these outputs had higher errors in the baseline condition as well, while the error for the majority of components stayed at about the same level as for the $0.5V_H$ flight condition.

For the tail cone, shown in Figure 5, almost all components were predicted with about 9-17% error for the forward flight maximum speed condition. Through the other test conditions the errors increased slightly.

For the tail pylon, shown in Figure 6, most components were predicted with about 12-17% error for the forward flight max speed condition. In the tail pylon, the errors maintained approximately the same level through the other test conditions which perhaps suggests that the loads in the tail pylon remain constant for these flight conditions.

Discussion

For each structural group (cabin, tail cone, tail pylon), there were several outputs that could be accurately predicted. There were also several outputs which consistently had high average error (these typically exhibited dynamic behaviour or had positive and negative values). It was noted that the testing errors were several times larger than the training errors in many cases, and this outcome may indicate the occurrence of overfitting of the ANNs and the global minima had not actually been reached. Alternatively, it could be an indication that the training data and the testing data were not statistically consistent, so that the testing data could have fallen outside the scope of the training data. These possibilities will be investigated in the work to follow.

Another limitation of this work was the normalization procedure that was used. The input and output parameters were normalized to the range of the parameters for that data file. Future work will look at using a more general normalization method, such as normalizing to the range of the parameter for the particular flight condition or to the range for the entire usage spectrum.
It should be noted that for each of these ANNs there were a large number of outputs. The advantage of this configuration was that the analysis was made more compact instead of having an individual ANN for each output. The drawback was that since the convergence of the network was based on the average of the mean squared error for all the outputs reaching a minimum, the assumption then was that all the outputs would converge at the same time. With individual ANNs they would converge separately and as a result the errors would likely be lower.

The ultimate application for this work is to improve accuracy in the calculation of component retirement times (CRTs) so that they reflect more closely the actual usage of the aircraft. The current calculation method is based on a worst-case scenario for how the aircraft will be used in service. It has not been determined at this time what level of accuracy in predicting the loads is required to cause a significant change in the component retirement time calculation. However it is known that important characteristics of the loads for CRTs include the peak values, mean values, and frequency information. The ANNs used in this work have done reasonably well in those regards.

The results obtained thus far in this work are preliminary but encouraging. Raw data was used as input without any pre-processing. In addition, domain knowledge was not incorporated into the selection of the inputs but the results are nonetheless promising. Much more work in this area is needed and is planned to be undertaken. In particular, a step back will be taken to focus on the pre-modelling stage, that is, more intelligent input selection and an assessment of the predictive variables. Data pre-processing options will be explored including filtering, smoothing and signal modulation. Incorporating time history information as an input to the neural network will be investigated. Different models other than the multi-layer perceptron but still within the realm of machine learning may prove to be better analytical tools for this problem.

Concluding Remarks

In this work, the potential of utilizing multi-layer artificial neural networks (ANNs) to determine helicopter airframe loads at fixed locations from flight state and control system (FSCS) parameters was explored. The appeal of using only FSCS parameters is that the instrumentation required to record these parameters already exists and is active on most helicopters. The ultimate application for this work is to improve accuracy in the calculation of component retirement times (CRTs) so that they reflect more closely the actual usage of the aircraft.

A set of three artificial neural networks were coded in MATLAB to predict 70 previously measured outputs in the cabin, tail cone and tail pylon. The preliminary results presented in this paper show that although the ANNs were not successful for every location, 30 flight state and control system parameters could be used to model these fixed airframe components with reasonable accuracy (approx 15% error) for forward level flight, even when tested on flight manoeuvres at speeds different than the one performed during training. Work is currently being done to validate this assertion for other manoeuvres, and based on testing on a
particular manoeuvre, steady left turn at 30 degrees, the results seem hopeful. Certainly there is much work to follow to improve the ANNs, in particular, incorporating pre-modelling and pre-processing techniques. However, the results obtained thus far demonstrate the strong potential for artificial neural networks to reliably estimate airframe loads on rotary-wing aircraft. Collectively, these results could eventually serve to predict dynamic loads on the main and tail rotor by means of different artificial neural networks.

Acknowledgments

This work was funded in part by Defence Research and Development Canada. The data used for this research was provided by Defence Science and Technology Organisation. The expertise and guidance from the Institute for Information Technology at the National Research Council were greatly appreciated.

References